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Highlights 

 Novel processing of LSCF cathodes for metal-supported fuel cells 

 Ex-situ sintering in Ar at 950 °C for 3 h 

 Significantly improved mechanical adherence 

 Reliable protection of the metallic substrate against oxidation 

 Avoiding the decomposition of the LSCF cathode 

 

Abstract 

Metal-supported solid oxide fuel cells (MSCs) have gained high attention as they offer a possibility to utilize 

solid oxide fuel cells (SOFCs) in mobile applications such as auxiliary power units in heavy duty vehicles. 

Cathode reliability is one of the main issues of MSC development, since cathodes tend to degrade rapidly 

after being in-situ activated during onset of the stack operation. In the present study, a novel sintering route 

for La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode material was developed. Sintering of the screen printed cathodes 

was performed before stack operation at 950 °C in reducing Ar atmosphere for 3 h. Under these conditions, 

severe oxidation of the metallic substrate and the Ni in the anode was avoided reliably. 

For proof of concept, phase stability and microstructure of the MSC cathodes were characterized. The results 

reveal that cathode layers sintered in Ar exhibit substantially improved adherence and mechanical stability 

compared to conventionally processed MSC cathodes, making them ready for systematic investigation of 

electrochemical performance. 
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Introduction 

Anode supported solid oxide fuel cells (ASCs) have been developed to an outstanding performance and 

durability level at Forschungszentrum Jülich GmbH [1]. However, the anode-supported design is particularly 

suitable for stationary applications due to the brittleness of the ceramic material and its vulnerability in terms 

of fast thermal cycling. Therefore the MSC concept is thought to extend the field of use to non-stationary 

applications. Various groups and research institutions have been working on the implementation of MSCs 

during the past years in order to take advantage of their promising characteristics.[2-6] The MSC design of 

Plansee SE (Reutte, Austria) was developed in close cooperation with JÜLICH since 2008.[7] Compared to 

ceramics, the metallic support is more robust in terms of stresses arising from vibrations or thermal cycles.[8, 

9] Nonetheless, there are restrictions limiting current MSC performance and long-term stability. One of these 

issues concerns the processing of the cathode layer. The fabrication of cathodes for MSCs cannot be 

conducted in the same way as for ASCs. This is due to the strong oxidation of the metal substrate and the 

nickel of the anode occurring if sintering is performed in ambient air. Reducing sintering conditions such as 

hydrogen atmosphere are preferred for MSCs to avoid detrimental oxidation effects. Though, cathode 

materials like LSCF decompose during thermal treatment in strongly reducing atmosphere. As a compromise, 

current MSC cathodes are utilized for stacking in the green state and in-situ activated during stack assembling 

and startup at 850 °C for 100 h. These in-situ activated cathodes show poor adherence to the Ce1-xGdxO2-δ 

(GDC – gadolinium doped ceria) diffusion barrier layer (DBL) and limited mechanical stability leading to 

degradation during long-term operation of cells.[7, 8, 10, 11] 

In the present study, a novel sintering route of LSCF cathodes was developed, which focuses on sintering of 

the cathodes under controlled reducing conditions before stack operation. First investigations were conducted 

on pure cathode material, which was pressed into pellets and sintered in atmospheres with varying oxygen 

partial pressure (pO2) to study the related shrinkage and phase stability. As reference, sintering in ambient air 

was performed. Next, the preferred sintering conditions were applied to screen printed cathode layers to take 

into account mechanical stability and durability of the sintered layers. Finally, the acquired knowledge was 



transferred to cathode layers screen printed on MSC half cells to proof the layer adherence and mechanical 

stability resulting from the applied conditions. 

 

Experimental 

The LSCF cathode powder was synthesized in-house by spray drying, subsequent calcination at 900 °C, wet 

milling to an average particle size of d50 = 0.8 ± 0.1 µm and drying at 70 °C. 

Investigation of the phase stability and the sintering behavior were carried out using uniaxially cold pressed 

samples (100 MPa, 120 s, 8 mm diameter). The sintering behavior was analyzed in various atmospheres using 

a Netsch DIL 402C dilatometer. The atmospheres for initial experiments were Air, Ar(5.0) and dry 

Ar/2.9%H2, representing standard ambient air atmosphere (pO2 = 10
3
 Pa), slightly reducing (pO2 ≈ 1 Pa) and 

significantly reducing (pO2 ≈ 10
-15

 Pa) atmosphere. Sintering temperature was varied between 800 and 

1100 °C. Further investigation was conducted by including the ITM substrate material (Plansee SE) to the 

sintering process of LSCF pellets in argon atmosphere in order to examine the influence of the metallic 

substrate on the phase stability of LSCF during sintering. After dilatometry the phase composition of the 

sintered samples was analyzed via XRD (D4 Endeavor, Bruker Corp., USA) to estimate applicable pO2 for 

cathode sintering. The acquired sintering conditions were transferred to sintering of LSCF layers screen 

printed on 8YSZ substrates (200 µm thickness, Kerafol, Germany) or MSC half cells (Plansee SE) 

respectively. A GDC diffusion barrier layer was coated on 8YSZ substrates as well as on electrolyte layers by 

magnetron sputtering. The influence of different sintering temperatures and atmospheres on the adherence and 

mechanical stability of cathode layers was estimated by investigating screen printed LSCF on GDC coated 

8YSZ substrates. In the case of on-setting phase decomposition, controlled reoxidation of the LSCF layers by 

annealing at 800 °C in ambient air (stack operation conditions) was investigated. Microstructure of the MSC 

cathodes was analyzed by SEM (Ultra 55, Zeiss, Germany). 

 

Results 

XRD analysis of samples sintered in the dilatometry study disqualified Ar/2.9%H2 atmosphere as severe 

decomposition of the cathode material occurred. Since strong phase decomposition during fabrication is 

detrimental for the application as cathode material, sintering in Ar/2.9%H2 was not considered in further 

experiments. In contrast, diffraction patterns of LSCF pellets sintered in Ar at temperatures up to 1100 °C did 



not reveal any phase decomposition (XRD spectra obtained from pellets not shown here). Dilatometry 

indicated an enhanced sintering activity when thermal treatment was conducted in Ar, compared to the 

sintering in ambient air, as shown in Fig. 1. Obviously, this increase of the sintering activity becomes more 

pronounced with increasing sintering temperature. This is likely due to the increasing formation of oxygen 

vacancies in low pO2 environments, which is coupled with a higher mobility of cations due to valence change. 

A related study was conducted recently on GDC by Esposito et al. [12] which also includes an explanation for 

increased sintering activity of MIEC ceramics at low pO2.  

Fig.1:  

 

This enhanced sintering is thought to improve mechanical stability of the cathode layer and adherence to the 

DBL due to intensified interaction between the layers and higher densification. Accordingly, Ar atmosphere 

was chosen for further experiments in order to take advantage of improved sintering of LSCF and to prevent 

strong oxidation of ITM substrate and anode. 

The presence of porous ITM substrate material during the sintering of LSCF pellets in Ar revealed a 

remarkable pO2 decrease by gettering residual oxygen from the Ar, hence influencing the phase stability of 

LSCF. XRD patterns of pellets sintered in Ar in presence of ITM exhibit reflexes corresponding to K2NiF4 

type structure and identified as tetragonal (I4/mmm) LaSrFeO4, as well as cubic Fe and SrCoO2.29 structures. 

Sintering of the screen-printed LSCF layers gave information about layer stability resulting from various 

sintering conditions. In an adhesive tape (pull-off) test, it was clearly observed that a sintering temperature of 



950-1040 °C results in a considerably stronger adherence of the LSCF cathode layer compared to layers 

sintered at 850 or 900 °C. This indicates that a sintering temperature higher than 900 °C should be chosen to 

improve the reliability of MSC cathodes. Sintering in Ar caused slight phase decomposition contrary to the 

observed phase stability of pellets. Fig. 2 shows the XRD patterns of LSCF layers screen printed on 

electrolyte substrates and an MSC half-cell respectively. The diffractogram of an LSCF layer on 8YSZ/GDC 

sintered in Ar at 950 °C (Fig. 2b) shows reflexes corresponding to the structures of LaSrFeO4, Co and Fe in 

addition to reflexes of the initially present perovskite structure (Fig. 2d). This difference of phase stability in 

comparison to the results achieved on pressed pellets is thought to originate from the high specific surface 

area of the screen-printed layer. Hence, the apparent reducing Ar atmosphere can penetrate the layer easily 

and cause notable phase transformation of the material. 

The layers sintered in Ar were reoxidized at 800 °C for 3 h in ambient air in order to investigate the 

reversibility of the phase decomposition. A phase transformation back to perovskite (La,Sr)(Co,Fe)O3-δ 

structures was observed (Fig. 2c). The phase fractions were calculated to 51 % LSCF in rhombohedral 

structure, 48 % cubic LSCF, and < 1 % Co3O4 by Rietveld refinement. Moreover, the reoxidized layers did 

not show any mechanical failure. Transfer of the selected sintering procedure to sintering of MSC cathode 

layers was performed. Sintering of screen printed LSCF cathodes of 10 x 10 mm² on 15 x 15 mm² MSC 

samples for 3 h in Ar at 850, 950 and 1040 °C respectively gave further information to select optimum 

sintering conditions applicable for MSC cathodes. XRD analysis subsequent to the cathode sintering 

confirmed the occurrence of phase transformation. Amounts of LaSrFeO4 and Co/Fe increased with the 

sintering temperature. Small amounts of La2O3 (1 % after sintering at 950 °C, 7 % at 1040 °C) were detected 

as well (Fig. 2a). 



Fig. 2:  

 

After sintering, the LSCF was reoxidized for 3 h at 800°C in ambient air. Fig. 3 shows the appearance of the 

cathode layer after reoxidation depending on the different sintering conditions. After sintering at 850 °C in Ar 

the cathode adhered on the surface of the MSC half-cell (not shown). This observation indicates that previous 

sintering at 850 °C in Ar did not cause high stresses due to the in-plane geometrical constraint or phase 

transformation which would damage the layer. Nevertheless, subsequent reoxidation at 800 °C in air resulted 

in failure of the cathode layer, which occurred at the interface between the cathode and the DBL (Fig. 3a/b). 

In sum, the low sintering temperature of 850 °C did not provide sufficient bonding of the cathode layer to the 

DBL, leading to delamination due to stresses obviously occurring during reoxidation. 



Fig. 3:

 

 

The cathode layer sintered in Ar at 950 °C and subsequently reoxidized at 800 °C in ambient air did not reveal 

any mechanical failure (Fig. 3c/d). Furthermore, the microstructure matched closely to the microstructure of 

LSCF cathodes sintered under JÜLICH ASC conditions at 1040 °C, 3 h in air. In contrast, the cathode layer 

sintered on the MSC half-cell at 1040 °C in Ar showed partial delamination already after sintering (Fig. 3e/f). 

SEM analysis revealed failure within the cathode layer, close to the cathode/DBL interface. It is expected that 

the enhanced sintering of LSCF in reducing atmosphere and the clearly pronounced phase transformation 

induce high stresses in the cathode layer due to increased layer strain misfit, causing the failure already during 

sintering. By comparison of the obtained results it is supposed that sintering at a temperature of 950 °C led to 

the best compromise regarding sufficient layer adherence and reversibility of the phase transformation. These 

conditions are the basis for systematic electrochemical studies on sintered MSCs. 

 

Conclusions and Outlook 

Sintering of LSCF in argon atmosphere was found to lead to moderate and reversible phase transformation. 

During sintering the initial perovskite structure was partly transformed to a tetragonal LaSrFeO4 structure 

which was reversibly transformed back to (LaSr)(CoFe)O3-δ perovskite structures upon reoxidation in ambient 



air at 800 °C. Presence of the ITM substrate material lowers the effective oxygen partial pressure during the 

sintering process, giving rise to partial phase transformation, without leading to unacceptable strong 

decomposition of the material. Poor adherence to the DBL was obtained when sintering was performed at 

temperatures as low as 850-900 °C. Remarkably stronger adherence resulted from sintering at 950-1040 °C. 

For MSC full cells an intermediate temperature of 950 °C prevented layer failure by avoiding strong phase 

decomposition and high sintering stresses. Furthermore, it ensures sufficient bonding of the cathode to the 

DBL, preventing early failure due to delamination. Therefore, ex-situ sintering in Ar atmosphere at a 

temperature of 950 °C is a promising concept to increase reliability of MSC cathodes. 

In near future, electrochemical performance of cathodes processed by the novel sintering route will be 

investigated. Long-term stability of sintered MSC cathode layers has to be proven as well. 
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Figure Captions 

1. Comparison of linear shrinkage of LSCF pellets by dilatometry in ambient air and Argon at 850 °C, 

950 °C and 1040 °C respectively.  

2. XRD patterns of screen printed LSCF cathode layers sintered in various atmospheres. a) LSCF 

cathode on MSC half-cell sintered in Ar at 950 °C for 3 h; b) LSCF cathode on 8YSZ/GDC 

electrolyte substrate sintered in Ar at 950 °C for 3 h; c) sample (b) reoxidized at 800 °C for 3 h in 

ambient air; d) LSCF on 8YSZ/GDC sintered in ambient air at 950 °C for 3 h. (CeO2 not included to 

Rietveld refinement; ZrO2 excluded after refinement as corresponding reflexes originate from the 

substrate) Powder Diffraction Files: LSCF cubic – 00-946-0335; LaSrFeO4 – 01-071-1745; Co3O4 – 



01-080-1533; CoFe – 00-049-1568; Fe – 96-901-5446; La2O3 – 01-074-1144; ZrO2 – 01-070-4429; 

CeO2 – 00-004-0593; for Rietveld refinement used files representing rhombohedral LSCF – 00-049-

0285, 01-082-1963, 01-086-1665. 

3. Illustration of MSC cathode layer adherence depending on the sintering temperature in Argon. a-b) 

sintered at 850 °C for 3 h in Ar & subsequent reoxidation at 800 °C for 3 h in air; c-d) 950 °C, 3 h in 

Ar & reoxidized; e-f) sintered at 1040 °C for 3 h in Ar. (Top images – stereo microscope, bottom 

images – SEM) 
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